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INTRODUCTION 

The cavity reactor  concept has  been proposed f o r  a number of 
applications, such as  magnetohydrodynamic power production and nuclear 
rocket propulsion. 
Space Administration to undertake a cr i t i ca l  experiment of a full s ize  
mockup rocket reactor  to determine i f  the reactor  physics design ca l -  
culations were co r rec t .  
National Reactor Testing Station by the General  Electr ic  Company fo r  
N A S A * .  
than those previously measured  r1). Results of various configurations 
that simulated the gas  of the core  with thin,  0,001 in.  thick,  uranium 
foils have been reported previously ( 2 )  

The la t ter  application led the National Aeronautics and 

This experiment is currently in operation at the 

This  recent c r i t i ca l  ex  eriment reac tor  is substantially l a r g e r  

(3) 3 (4) .  

The c r i t i ca l  m a s s  vs .  fuel radius for  these configurations is  
shown in F igure  1 .  A l l  configurations had a cent ra l  cavity 6 ft in  dia-  
m e t e r  by 4 ft  long, and the fuel radius was adjusted while maintaining 
the 4 f t  fuel length of the ful l  cavity. 
using diffusion theory f o r  the case in which fuel occupied near ly  the 
full  cavity diameter  and t ransport  theory when a void existed between 
the fuel and the heavy wa te r ,  have generally failed to predict  the measured  
c r i t i ca l  mass within the o rde r  of 10%. 

Calculations of these configurations, 

An unevaluated experimental bias was postulated for  the effect 

The fuel sheets  were a r ranged  
of fuel sheet distribution vs .  the effect of a uniformly dispersed gas  
which was assumed in the calculations. 
on aluminum fuel t rays  as shown in F igures  2 and 3.  There  a r e  paths 
through this  arrangement  that encounter no fuel sheets (approximately 
1 /2% bf the total  paths) and other  paths that encounter a much g rea t e r  
effective fuel thickness than would be encountered i n  a uniform gas  of 
the same  average fuel density.  
not analyzed rigorously a t  the present ,  have been analyzed s ta t is t ical ly .  
Variations of a s  much as 57'0 to 10% in fuel  interaction rate  have bean 
indicated between the two types of fuel,  with the higher interaction ra te  
existing in the uniform gas  configuration as  i l lustrated in Figure 4.  To 
determine if the foil  distribution was indeed introducing a bias of this  
magnitude, the gas-core  cr i t ical  experiment was undertaken. An actual 
gaseous ( U F  ) core  configuration was made cr i t ica l ,  on May 17 ,  1967, 
and subsequent measurements  were made to compare the resu l t s  f rom 
the real gas  configuration with those f r o m  a mockup foil configuration 
of the identical dimensions.  

The fuel  distribution effects ,  though 
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SYSTEM DESIGN 

The gas-core  tank was designed to contain the fuel in a 4 ft 
d i a m e t e r ,  by 43  in .  long tank which is shown in Figure 5.  
a r rangement  w a s  tested in a mockup experiment pr ior  to performing 
the gaseous co re  experiment.  
e r a t u r e ,  it  was necessary  to provide a mechanism for  heating the 
core- tank to tempera tures  of the order  of 200 F. Because of the 
significant effect  of neutron absorbers  on the c r i t i ca l  m a s s ,  it was 

This 

Since UF6 is a solid at  ordinary temp- 

0 

* Under contract  to the Atomic Energy Commission 
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important to use only low c r o s s  section ma te r i a l s ,  particularly at  the 
outside boundary of the fuel  (the tank wal l s ) .  
the s t ruc tura l  container and hot air a s  the heating medium circulating 
in a qua r t e r  inch annulus at the outside of the tank. 
f e r r e d  into o r  out of the tank through 0 .305  in .  I. D. monel lines that were 
within the hot a i r  ducts .  
about 20 ft to standard U F 6  t ransfer  and storage bottles.  This sys tem is 
i l lustrated i n  Figures  5 ,  6 and 7 .  The operating conditions a r e  shown in 
Figure 8 for  the two basic configurations measured ,  a reflector of all 
D20 and one with a 4 in .  thick s lab of beryllium located 6 .7  c m  f rom the 
cavity w a l l .  

Aluminum was chosen as 

The U F  was t r a n s -  6 
The hot a i r  ducts and U F 6  t r ans fe r  l ines extended 

OPERATING EXPERIENCE 

Initial t ransfer  r a t e s  of U F 6  to the co re  tank were  as high as  
2 l b / h r ,  but slowed to l e s s  than half of this  a s  the bottles became nea r  
empty. Reverse t r ans fe r  into the bottles f rom the tank was a s  rapid as 
5 l b / h r  initially, but slowed to very low ra t e s  as  the tank became empty. 
Each inventory of fuel was obtained by evacuating the t r ans fe r  l ines using 
only the pumping action of a cold t r a p ,  and then weighing the cold t r a p  and 
the U F 6  bottles.  

The approach to cri t icali ty was made  with the usual incremental  
increases  in fuel loading, making cer ta in  that the total  vaporization 
tempera ture-pressure  conditions were equaled o r  exceeded. 
reactivity effects of tank tempera ture ,  once cri t icali ty had been achieved 
a r e  shown in Figure 9.  
heating af ter  vaporization temperature  was reached and continued to 
increase  slowly af ter  the heater  and blower were  turned off while the 
wall temperature  decreased .  When the blower was turned on the 
reactivity increased rapidly producing a reactivity spike and then 
decreased with continued cooldown. 
spike was due to a n  initial condensation on the inner  surface wall .  
s imi la r  measurement  i s  shown in Figure 10 with two reactivity spikes 
on cooldown. The f i r s t  i s  postulated to be due to the initial condensa- 
tion on the flat end of the tank where the cold air impinges and the 
second due to the cooling of the outer  radial  wall .  No explanation i s  
given for  the very slow reactivity r i s e  during the operation when all 
of the fuel should be vaporized. 

Typical 

A s  indicated, the reactivity rose  slowly while 

It was suspected that the reactivity 
A 

Throughout all operat ions,  the hot air s t r e a m  w a s  monitored 
at  i t s  exit f rom the tank by an alpha detector and then f i l t e red .  
leaks were  not detected; though shor t  lived radon daughter products 
were  observed.  

Uranium 

EXPERIMENTAL RESULTS AND CONCLUSIONS 

A s  previously mentioned, a mockup of the U F 6  experiment 
w a s  performed prior to performing the gas  experiment .  
differences in aluminum s t ruc ture  inside the fue l  region between the 
mockup experiment and the U F 6  experiment ,  and the UF6  contained 
fluorine which was not simulated in the mockup. Measurements  were  
made of the worth of fluorine,  using Teflon and carbon,  and the worth 

The re  were  
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F i g .  7 G a s  t r ans fe r  equipment 
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of aluminum in o r d e r  to co r rec t  for these differences between the experi-  
ments .  
almost exactly in the gas  and mockup experiments .  
son of experimental  resul ts  is shown in Table 1 .  

The aluminum mater ia l  at the edge of the fuel region was duplicated 
The resulting compari-  

A new core  mockup has been assembled and is i l lustrated in F igure  
This fuel support s t ructure  features  fuel boxes 3 in. square by 4 ft  long 11. 

which a r e  supported within an aluminum support s t ruc tu re ,  F igure  1 2  shows the 
fuel a r rangement  and i l lustrates  the method-in which zero  interaction fuel 
paths a r e  minimized.  
with a mockup of the gaseous experiment.  The fuel loading cor rec ted  f o r  
differences in aluminum within the fuel region with this assembly i s  
within 570 of the gaseous experiment and indicates that this arrangement  
i s  superior  to the original arrangement .  It i s  concluded that this  mockup 
provides an adequate representation of the gas  co re  and can be used to 
study variations in mater ia l s  and georxietry that are extremely difiicult 
with the g a s  co re .  
of 9% should be applied to pr ior  resul ts  to  co r rec t  f o r  fuel heterogeneity.  
The work planned for  the near  future is to evaluate the complete effect 
of s t ruc tura l  ma te r i a l s  and the hydrogen coolant. 

This assembly achieved crit icali ty on October 25 

It is  fur ther  concluded that a correct ion of the o r d e r  
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